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Outline

• Goal:	understanding	proton	spin	at	small	x	
• Observables:	quark	helicity	TMD	&	PDF	at	small-x,	g1 structure	
function
• Small-x	evolution	for	the	“polarized	dipole”:

• New	helicity	evolution	evolution	equations	at	small	x
• Large-NC limit
• Large	NC &	Nf limit

• Solution	of	the	large-NC evolution	equations	– see	talk	by	Matt	
Sievert	next:	
• small-x	asymptotics of	the	g1 structure	function,	quark	hPDFs and	
helicity	TMDs

• impact	on	proton	spin



Our	Goals



Proton	Spin	Puzzle
• Helicity	sum	rule	(Jaffe	&	Manohar	form):

with	the	net	quark	and	gluon	spin

• The	helicity	parton	distributions	are	(f	=	G,	u,	d,	s,	…)

with	the	net	quark	helicity	distribution

• Lq and	Lg are	the	quark	and	gluon	orbital	angular	momenta
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How	much	spin	is	at	small	x?

• E.	Aschenaur et	al,	arXiv:1509.06489 [hep-ph]
• Uncertainties are	very large!



Spin	at	small	x
• The	goal	of	this	project	is	to	provide	theoretical	understanding	

of	helicity	PDF’s	at	very	small	x.	

• Our	work	would	provide
guidance	for	future	hPDF’s
parametrizations.

• Strictly-speaking	we	only	talk	
about	quark	helicity,	but	most
likely	our	analysis	applies	to
gluon	hPDF’s as	well.		



Helicity	Observables

Yu.K.,	M.	Sievert,	arXiv:1505.01176	[hep-ph]
Yu.K.,	D.	Pitonyak,	M.	Sievert,	arXiv:1511.06737	[hep-ph]



Observables
• We	want	to	calculate	quark	helicity	PDF	and	TMD	and	the	g1	

structure	function.	

ƒ1 =

g1L =

h1 =
g1T

┴ =ƒ1T
┴ =

h1
┴ =

h1L
┴ =

h1T
┴ =Sivers

Boer-Mulders

Helicity

Transversity

Leading Twist TMDs
Quark Polarization

Nu
cl

eo
n 

Po
la

riz
at

io
n

Un-Polarized
(U)

Longitudinally Polarized
(L)

Transversely Polarized
(T)

Nucleon Spin Quark Spin

—

—

—

—

—

—

—

U

L

T



Quark Helicity TMD
• We	could	start	by	simply	calculating	quark	TMD’s	using	the	operator	
definition:

• Instead	we	will	find	the	TMDs	from	the	SIDIS	cross	section.



SIDIS	on	a	Spin-Dependent	Target	

x⊥ y⊥

To	transfer	spin	information	between	the	polarized	target	and	the	produced	quark	
we	either	need	to	exchange	quarks	in	the	t-channel,	or	non-eikonal gluons.

Here’s	an	example	of	the	quark	exchange	(we	work	in	the	A+=0	light	cone	gauge	
of	the	projectile):			

This	is	in	addition	to	the	standard	
handbag	diagram	which	does	not	evolve
under	our	small-x	evolution:
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Target	Spin-Dependent	SIDIS
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It	is	straightforward	to	include	multiple	shock	wave	interactions	into	the	
polarized	SIDIS	cross	section:

=	the	answer



Polarized	Dipole
• All	flavor	singlet	small-x	helicity	observables	depend	on	one	object,	

“polarized	dipole	amplitude”:

• Double	brackets	denote	an	object	with	energy	suppression	scaled	out:
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Quark	Helicity	Observables	at	Small	x

• One	can	show	that	the	g1 structure	function	and	quark	helicity	PDF	and	
TMD	at	small-x	can	be	expressed	in	terms	of	the	polarized	dipole	
amplitude	(flavor	singlet	case):	

• Here	s	is	cms energy	squared,	zi=L2/s,	
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Helicity	Evolution	at	Small	x
flavor-singlet	case

Yu.K.,	D.	Pitonyak,	M.	Sievert,	arXiv:1511.06737	[hep-ph],
arXiv:1610.06197	[hep-ph]



Polarized	Dipole
• Our	goal	now	is	to	construct	a	small-x	evolution	equation	for	the	

“polarized	dipole	amplitude”.

• Double	brackets	denote	an	object	with	energy	suppression	scaled	out:
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Helicity	Evolution	Ingredients
• Unlike	the	unpolarized evolution	(glue	only),	in	one	step	of	helicity	

evolution	we	may	emit	a	soft	gluon	or	a	soft	quark	(all	in	A+=0	LC	gauge	of	
the	projectile):	

• When	emitting	gluons,	one	emitted	gluon	is	eikonal,	while	another	one	is	
soft,	but	non-eikonal,	as	is	needed	to	transfer	polarization	down	the	
cascade/ladder.
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Helicity	Evolution:	Ladders
• To	get	an	idea	of	how	the	helicity	evolution	works	let	us	try	iterating	the	

splitting	kernels	by	considering	ladder	diagrams	(circles	denote	non-
eikonal gluon	vertices):

• To	get	the	leading-energy	asymptotics we	need	to	order	the	longitudinal	
momentum	fractions	of	the	quarks	and	gluons	(just	like	in	the	unpolarized
evolution	case)

obtaining	a	nested	integral
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Helicity	Evolution:	Ladders

• However,	these	are	not	all	the	logs	of	energy	one	can	get	here.	Transverse	
momentum	(or	distance)	integrals	have	UV	and	IR	divergences,	which	lead	
to	logs	of	energy	as	well.

• If	we	order	transverse	momenta	/	distances	as	(Sudakov-b ordering)

we	would	get	integrals	like

also	generating	logs	of	energy.	
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Helicity	Evolution:	Ladders

• To	summarize,	the	above	ladder	diagrams	are	parametrically	of	the	order	

• Note	two	features:	
– 1/s	suppression	due	to	non-eikonal exchange
– two	logs	of	energy	per	each	power	of	the	coupling!
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Resummation Parameter
• For	helicity	evolution	the	resummation parameter	is	different	from	BFKL,	

BK	or	JIMWLK,	which	resum powers	of	leading	logarithms	(LLA)																															

• Helicity	evolution	resummation parameter	is	double-logarithmic	(DLA):

• The	second	logarithm	of	x	arises	due	to	transverse	momentum	integration	
being	logarithmic	both	in	UV	and	IR.

• This	was	known	before:	Kirschner and	Lipatov ’83;	Kirschner ’84;	Bartels,	
Ermolaev,	Ryskin ‘95,	‘96;	Griffiths	and	Ross	’99;	Itakura et	al	’03;	Bartels	
and	Lublinsky ‘03.	
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Non-Ladder	Diagrams
• Ladder	diagrams	are	not	the	whole	story.	The	non-ladder	diagrams	below	

are	also	leading-order	(that	is,	DLA).	

• Non-ladder	soft	quark	emissions	cancel	for	flavor-singlet	observables	we	
are	primarily	interested	in.	Non-ladder	gluons	do	not	cancel.	
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Virtual	Corrections
• In	addition,	virtual	corrections	from	the	unpolarized LLA	evolution	have	

UV	divergences,	which	cancel	between	real	and	virtual	diagrams.	Here	the	
corrections	are	not	cancelled,	but	are	regulated	by	the	cms energy.	

• Helicity	evolution	thus	also	contains	the	following	types	of	graphs:	



Evolution	for	Polarized	Quark	Dipole
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One	can	construct	an	evolution	equation	for	the	polarized	dipole:

Spin-dependent	(non-eikonal)	vertex
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Evolution	for	Polarized	Quark	Dipole
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Polarized	Gluon	Dipole	Evolution	
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Note	that	at	our	sub-eikonal level,	gluon	dipole	is	a	product	of	two	quark	dipoles	color-wise,
but	these	‘quark’	dipoles	evolve	differently	from	the	polarized	dipole	made	of	actual	quarks.



Polarized	Dipole	Evolution	in	the	Large-Nc Limit

In	the	large-Nc limit	the	equations	close,	leading	to	a	closed	system	of	2	equations:	
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You	friendly	“neighborhood”	dipole
• There	is	a	new	object	in	the	evolution	equation	– the neighbor	dipole.
• This	is	specific	for	the	DLA	evolution.	Gluon	emission	may	happen	in	one	

dipole,	but,	due	to	transverse	distance	ordering,	may	’know’	about	
another	dipole:

• We	denote	the	evolution	in	the	neighbor	dipole	02	by	
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Large-Nc Evolution:	Strict	DLA	Limit

• In	the	strict	DLA	limit	we	neglect	the	LLA	evolution	(put	S=1)	
and	get:	



Polarized	Dipole	Evolution	in	the	Large-Nc&Nf Limit
In	the	large-Nc&Nf limit	the	equations	close	too,	leading	to	a	closed	system	of	5	equations:	
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Large-Nc&Nf Evolution
• The	evolution	equations	read	(in	the	strict	DLA	limit,	S=1):



Initial	Conditions
• Initial	conditions	for	all	our	evolution	equations	should	be	given	by	Born-

level	interactions	(“dressed”	by	multiple	rescatterings in	the	saturation	
case):
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Helicity	Evolution	at	Small	x
flavor	non-singlet	case

Yu.K.,	D.	Pitonyak,	M.	Sievert,	arXiv:1610.06197	[hep-ph]



Flavor	Non-Singlet	Observables
• In	the	flavor	non-singlet	case,	all	helicity	observables	again	depend	on	the	

polarized	dipole	amplitude:

• Polarized	dipole	amplitude	is	different	(difference	instead	of	sum):

• This	is	related	to	the	definition
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Flavor	Non-Singlet	Evolution
• Evolution	equations	end	up	being	much	simpler	in	the	non-singlet	case:

• Analytical	solution	(in	the	DLA	case,	S=1)	leads	to	(in	agreement	with	
Bartels	et	al,	‘95)

• The	resulting	intercept	is	smaller	than	the	flavor-singlet	intercept.	
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Conclusions
• We	have	constructed	new	DLA	evolution	equations	for	the	polarized	dipole	

operator,	which	allow	us	to	find	the	small-x	asymptotics of	the	quark	
helicity	TMDs	and	PDFs	and	of	the	g1 structure	function.

• Like	the	B-JIMWLK	hierarchy,	our	equations	do	not	close	in	general.	They	
close	in	the	large-NC and	large-NC&Nf limits.

• Solution	of	the	flavor	singlet	evolution	equations	at	large-NC will	be	
discussed	in	the	talk	by	Matt	Sievert	(next).	It	may	potentially	generate	a	
solid	amount	of	spin	at	small-x	(see	arXiv:1610.06188	[hep-ph]).

• Future	work	may	involve	including	running	coupling	and	saturation	
corrections	+	solving	the	large-NC&Nf equations.	All	are	likely	to	slightly	
lower	the	intercept.
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Small-x	Quark	Helicity TMD	Evolution:	Ladders

x⊥ y⊥

z⊥, σ z⊥, σ′

x⊥ y⊥

z⊥, σ z⊥, σ′

A	part	of	this	evolution	equation	comes	from	ladder	diagrams:	

Interestingly	the	quark	and	non-eikonal gluon	ladders	mix	(see	the	right	panel),
resulting	in	a	more	complicated	evolution	equation:
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Ballpark	Estimate:	Ladders

• Summing	up	mixing	quark	and	gluon	ladders	yields

with

• The	numbers	are	encouraging	(as=0.3,	Nc=Nf=3):

• But:	need	to	include	the	non-ladder	graphs.
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Unpolarized DIS:	Small-x	Evolution



Dipole	picture	of	DIS
• In	the	dipole	picture	of	DIS	the	virtual	photon	splits	into	a	

quark-antiquark	pair,	which	then	interacts	with	the	target.
• The	total	DIS	cross	section	and	structure	functions	are	

calculated	via:
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Dipole	Amplitude
• The	total	DIS	cross	section	is	expressed	in	terms	of	the	(Im

part	of	the)	forward	quark	dipole	amplitude	N:
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Dipole	Amplitude
• The	quark	dipole	amplitude	is	defined	by

• Here	we	use	the	Wilson	lines	along	the	light-cone	direction

• In	the	classical	Glauber-Mueller/McLerran-Venugopalan
approach	the	dipole	amplitude	resums multiple	rescatterings:
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Dipole	Amplitude
• The	energy	dependence	comes	in	through	nonlinear	small-x	

BK/JIMWLK	evolution,	which	resums the	long-lived	s-channel	
gluon	corrections:
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Notation	(Large-NC)
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Nonlinear	Evolution
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To	sum	up	the	gluon	cascade	at	large-NC we	write	the	following	equation	
for	the	dipole	S-matrix:
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Remembering	that	S=	1-N	we	can	rewrite	this	equation	in	terms	of	
the	dipole	scattering	amplitude	N.



Nonlinear	evolution	at	large	Nc
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As	N=1-S	we	write

Linear	terms	=	BFKL	equation.



What	About	Spin?
• Spin	dependence	is	energy-suppressed	and	is	thus	sub-leading	in	the	

small-x	asymptotics of	total	cross	sections	and	unpolarized structure	
functions.	It	is	often	neglected.

• The	small-x	asymtotics of	g1	structure	function	was	studied	in	the	double-
logarithmic	approximation	(DLA)	by	Bartels,	Ermolaev and	Ryskin (BER)	in	
1995-1996,	using	the	technique	developed	by	Kirschner and	Lipatov in	
1983.

• DLA	resums powers	of

• BER	obtained	a	steep	rise	of	g1 with	decreasing	x.	Can	we	see	this	in	our	
formalism?
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Small	x	Asymptotics
of	the	Quark	Helicity	Distribution	

Yu.K.,	D.	Pitonyak,	M.	Sievert,	arXiv:1610.06188	[hep-ph]



Solution	of	the	large-NC Equations
• We	found	a	numerical	solution	of	the	large-Nc DLA	evolution	equations	

(linearized,	without	saturation	corrections):
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Numerical	Solution
• We	discretized	the	equations	and	solved	them	iteratively:

• We	then	extrapolated	
the	intercept	to	
the	continuum:	
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Prior	Results
• Small-x	DLA	evolution	for	the	g1 structure	function	was	first	considered	by	

Bartels,	Ermolaev and	Ryskin (BER)	in	‘96.	

• Including	the	mixing	of	quark	and	gluon	ladders,	they	obtained

with	zs =	3.45	for	4	quark	flavors	and	zS=3.66	for	pure	glue.	

• The	power	is	large:	it	becomes	larger	than	1	for	the	realistic	strong	
coupling	of	the	order	of	αs =	0.2	−	0.3,	resulting	in	polarized	PDFs	which	
actually	grow	with	decreasing	x	fast	enough	for	the	integral	of	the	PDFs	
over	the	low-x	region	to	be	(potentially)	large	(infinite).
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Solution	of	the	large-NC Equations

• The	resulting	small-x	asymptotics is	(about	35%	smaller	than	BER’s	3.66	
any-NC	pure	glue):
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Impact	on	proton	spin
• We	have	attached	a																																											curve	to	the	existing	hPDF’s

fits	at	some	ad	hoc	small	value	of	x	labeled	x0 .	
• Defining																																																														we	plot	it	

for	x0=0.03,	0.01,	0.001:

• We	observe	a	moderate	to	significant	enhancement	of	quark	spin.	
• More	detailed	phenomenology	is	needed	in	the	future.
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Intercepts
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Here	we	plot	our	(flavor-singlet)	helicity	intercept	as	a	function	of	the	coupling.	
We	show	BER	result	and	LO	BFKL	(all	twist	and	leading	twist)	for	comparison.		
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Intercepts
• We	can	summarize	some	LO	intercepts,	including	the	ones	we	found,	

in	the	following	table:

55


